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Charge fractionalization in small fractional-Hall samples
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The discovery of fractional quantum Hall effect
(FQHE) in 2D electron gas gave rise to immense inte-
rest in topological phases of matter [1]. One of the most
intriguing features of FQHE state is fractionally charged
excitations which embody anyonic statistics. Even though
the FQHE was first observed in GaAs-GaAlAs hetero-
junctions, experiments in optical lattices [2] allow much
more controllable study of many-body systems, therefore
allowing regimes that are impossible to realise in semi-
conductor based experiments. Historically, FQHE comes
from the field of condensed matter systems, which can be
characterized by a macroscopically large number of par-
ticles, and as a consequence, numerical studies were fo-
cused only on infinite or periodical Hamiltonians in order
to circumvent the limits of classical computers. Therefo-
re, finite size systems remain mostly untouched. One can
raise important questions, such as: can FQHE states be
realised in minuscule lattices, containing only several sites
in diameter? What additional effects would open bounda-
ry conditions introduce? What filling factor needs to be
set in order to observe FQHE states? In this work we try
to tackle all of these questions by numerically solving the
Harper-Hofstadter Hamiltonian in the presence of bosonic
onsite interactions:
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+
U
2
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j

n̂ j (n̂ j − 1)

+
∑
j

Vj n̂ j . (1)

The first and the second terms in this equation rep-
resent the kinetic energy and interactions between bosons
respectively. The last term represents a potential relief,
which was used as a main probe to look for charge frac-
tionalization. It is worth noting, that in this system charge
is defined as a particle number n j on every lattice site. The
idea is to introduce localised potential defects in the form
of hills or valleys and by varying their depth we expect to
observe elementary excitations forming around them.

Fig 1. Charge fractionalization in 9 × 6 square lattice.
Lattice used in simulations is depicted on the left panel.
On the right plot – integrated densities 〈n j〉 for lattice

sites belonging to different shaded areas in the left panel
with corresponding color. Lattice potential is set to 0 for

all lattice sites, except those, marked with red
(Vj = +V/4) or blue (Vj = −V/4) dots. When strength of

introduced potential defects are small we see, that the
sample shows almost no reaction to it as is expected

from fluid-like state, however, around V = 1.5 there is a
very steep jump (drop) in the densities around defects,

indicating localisation of some charge, which reflects the
formation of fractionally charged excitations with charge

1/2.

Indeed, by using this simple method we were able
to observe localisation of fractional charge in several lat-
tices with artificial magnetic flux. Various magnetic flux
values, particle concentrations and geometries were eva-
luated. It would also be interesting to observe fractional
statistics, however, proximity of the edges makes a direct
observation difficult.
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