Išsklaidytų elektronų sužadinant Rb autojonizacines būsenas kampinis pasiskirstymas

Angular distribution of scattered electrons in excitation of autoionizing states in Rb atoms

Alicija Kupliauskienė¹, Viktorija Roman² and Oleksandr Borovik²

¹Institute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio Ave. 9, LT-10222 Vilnius, Lithuania ²Department of Electron Processes, Institute of Electron Physics, 88017 Uzhgorod, Ukraine <u>alicija.kupliauskiene@tfai.vu.lt</u>

The ejected-electron and photoabsorption spectroscopies are powerful methods for the investigation of the autoionizing states of atoms [1, 2]. Concerning quasimetastable and metastable states, their direct observation in the excitation channel is enabled only by the energy-loss spectroscopy.

The main purpose of the present work was to calculate the angular distribution of scattered electrons from the excitation of the autoionizing states of Rb atom by electron-impact. The obtained regularities of the angular distribution are planned to be used for the analysis of energy-loss spectra measured in our group.

For the excitation of Rb atom from the state J_0 to the state J_1 by an electron moving with the momentum p_1 can be written as follows [3]:

$$\frac{d\sigma(J_0 \rightarrow J_1 p_2)}{d\vartheta} = \frac{\sigma}{4\pi} \Big[1 + \sum_{k>0} \beta_k P_k(\cos(\vartheta)) \Big].$$

Here σ is the total excitation cross section [3] of an atom, $P_k(cos(\vartheta))$ is the Legendre polynomial, ϑ is the polar angle of the scattered electron with respect to the direction of the incoming electron, the asymmetry parameter β_k of the angular distribution of the scattered electrons is defined as [3, 4]:

$$\beta_{k} = \frac{(2k+1)B^{ex}(0,k,0,k,k,0,k,0,k)}{B^{ex}(0,0,0,0,0,0,0,0,0,0)}$$

The expression for B^{ex} is presented in [4], and the summation parameter k can acquire the values *max* $(|\lambda_1-\lambda_1 \rceil, |\lambda_2-\lambda_2 \rceil) \le k \le \min(\lambda_1+\lambda_1, \lambda_2+\lambda_2)$ for each set of the partial wave momenta which can be very large depending on the energy of the projectile electron.

The calculations of the parameters β_k were performed by using our own computer codes in the basis of the intermediate coupling Hartree-Fock state wave functions. The calculated factors

$$C = 1 + \sum_{k>0} \beta_k P_k(\cos(\vartheta))$$

characterizing the increase or decrease of the intensity of the scattered electrons at the `magic` angle ϑ =54.7° are presented in table 1 for some of low-lying autoionizing states of Rb atoms as a function of the energy *E* of impacting electrons.

Table 1. The factors <i>C</i> for the autoionizing states of Rb
in the case of the registration of the scattered electrons
at 54.7° angle.

E(eV)	$5s^2 {}^2P_{1/2}$	$5s^{2} P_{3/2}$	5s(¹ P)5p ² P _{3/2}	4d(¹ P)5s ² P _{3/2}
19	0.33	0.31	0.50	1.62
25	0.58	0.56	0.71	1.06
30	1.06	1.08	1.09	0.69
35	1.14	1.16	0.30	0.63
40	1.12	1.14	0.13	0.61
45	1.48	1.49	0.04	0.57
50	0.89	0.92	0.00	0.52
55	0.82	0.84	0.01	0.47
60	0.76	0.78	0.03	0.46
65	0.68	0.70	0.05	0.45
70	0.62	0.64	0.09	0.47
75	0.60	0.61	0.11	0.48
80	0.57	0.57	0.13	0.48

The results in table 1 show, that the differential excitation cross sections for all states except $4d(^{1}P)5s$ $^{2}P_{3/2}$ state should increase from the excitation threshold and reach a maximum at the energy of about 35 eV. In the case of $5s^{2} \, ^{2}P_{1/2,3/2}$ the cross sections decrease with increasing impacting electron energy. The cross section of $5s(^{1}P)5p \, ^{2}P_{3/2}$ state achieves a minimum at 55 eV and then starts to increase. In the case of $4d(^{1}P)5s \, ^{2}P_{3/2}$ state, the cross section should decrease from the threshold, reach a minimum at 65 eV and then slowly increase with increasing the energy of incoming electrons. The present data will be used for analysing the experimental energy-loss spectra of Rb atoms [5].

Keywords: electron-impact excitation, autoionizing states, electron angular distribution.

References

- [1] A. Borovik, V. Roman, and A. Kupliauskienė, J. Phys. B 45, 045204 (2012).
- [2] M.W. D. Mansfield, Proc. R. Soc. Lond. A 364, 135 (1978).
- [3] A. Kupliauskienė, Lith. J. Phys. 44, 17 (2004).
- [4] A. Kupliauskienė, Phys. Scr. **75**, 524 (2007).
- [5] V. Roman, V. Hrytsko, A. Borovik, Uzhorod University Scientific Herald. Series Physics. 34, 139 (2013).